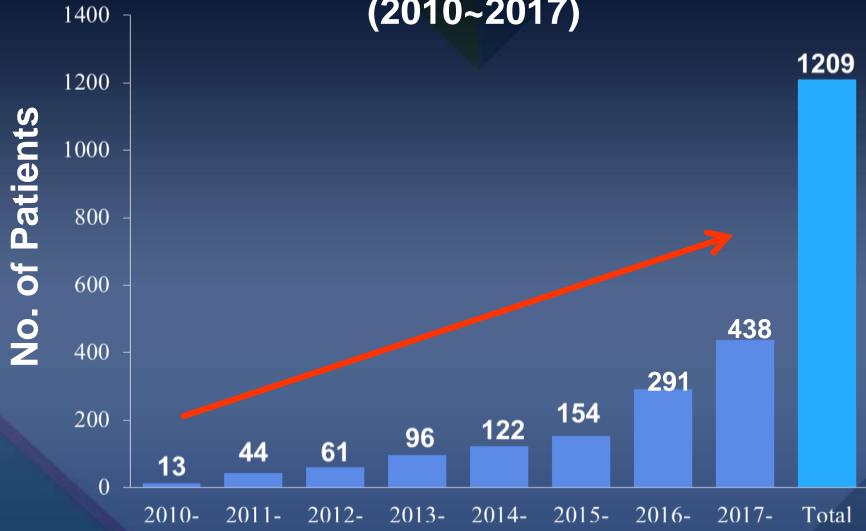
Minimalist TAVR with Edwards SAPIEN 3 Valve

Duk-Woo Park, MD, PhD

Department of Cardiology, Ulsan College of Medicine,

Asan Medical Center



Conflict of Interest Statement

- I received lecture fees from
 - Edwards Lifesciences
 - Medtronic, and
 - Boston Scientific

TAVR in Korea (2010~2017)

Baseline Characteristics (n=623)

	N=623
Age (Years)	78.6±6.3
Female	51.6 %
STS score	7.83± 8.86
DM	34.6 %
HTN	77.1 %
Stroke or TIA	15.3 %
PAOD	12.7 %
CKD on dialysis	6.4 %
Hospitalization period (Days)	12.1±7.5
TAVR to discharge (Days)	7.8±6.2

Procedural Characteristics

	N=623
Approach	
Femoral	614 (97.8%)
Apical	11 (1.8%)
Subclavian	3 (0.5%)
Operation room	
Hybrid room	358 (57.0%)
Cath room	270 (43.0%)
Anesthesia duration (mins)	131.5±43.2
General anesthesia	533 (84.9%)
Conscious sedation	95 (15.1%)

Standard TAVR Defined by VARC

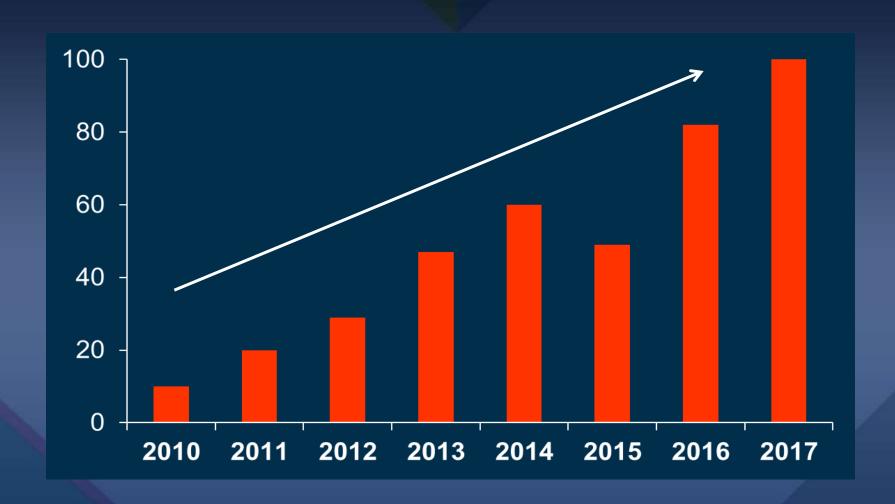
Standard Performance (VARC-2*) for High-Risk AS patients (@ 30 days)

All-cause mortality < 3%

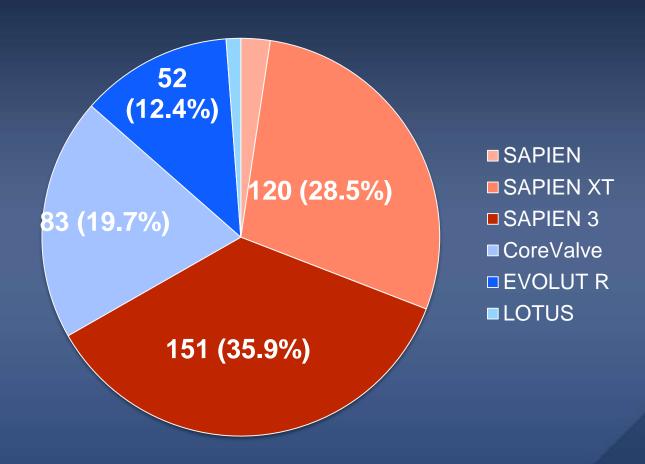
Major (disabling) strokes < 2%

Major vascular complications < 5%

New permanent pacemakers < 10%


Mod-severe PVR < 5%

Asian 2017	<i>Korea</i> 2017
2.5%	4.5%
2.2%	1.4%
5.0%	? %
9.5%	5.3%
9.8%	5.4%


TAVR in AMC

TAVR in AMC (2010-2017, n=421)

TAVR in AMC Device

TAVR in AMC

- 1. Good Collaborative "Heart Team",
- 2. Consistent, Meticulous CT Measurement, "Own CT Algorithm for Device Selection"
- 3. Simplification of the Procedure, "Minimalist Approach"

Procedural Change in AMC : TAVR minimalist

- General anesthesia
- Intubation

Simpler TAVR

- Procedure <60 min
- 1 night stay at CCU
- Discharge on Day #3

TEE

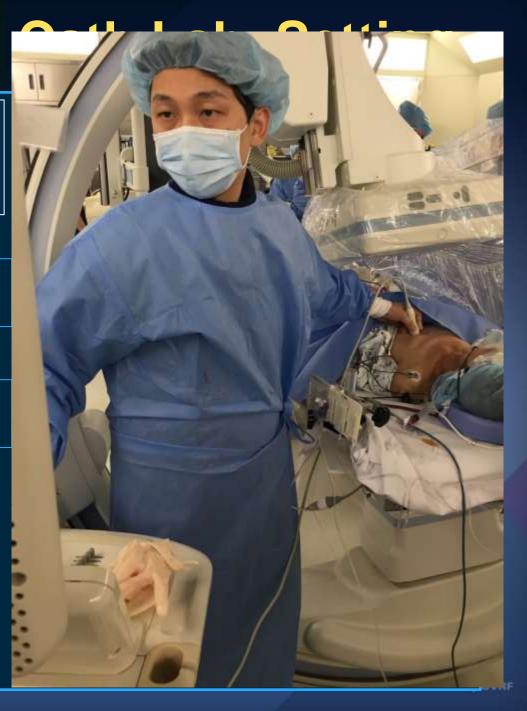
Standard TAVR Vs. Minimal TAVR

Minimal Approach:

«Assisting Staff»:

- Anesthetist (stand-by)
- Cardiac surgeon (near-by)

Prep. Table


Interventionist #1

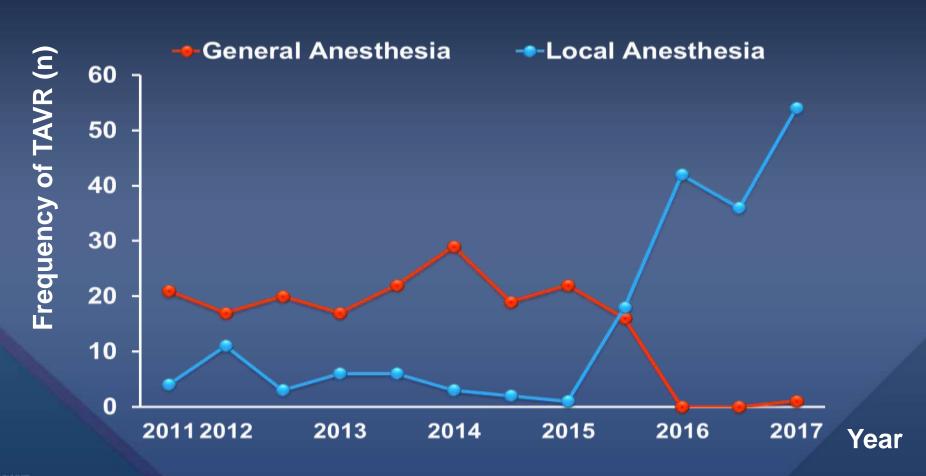
Interventionist #2

Fellow

NURSE RVP

"Minimalist Approach" TAVR in AMC

Conscious Sedation, No General Anesthesia Requires High Operator/Team Experience No TEE, but TTE No central venous catheter 30 min. Procedure Early assessment of neurologic status Early recovery, shorter length of stay, Discharge on Day #3 **Less Complications, Better Outcomes**



"Minimalist Approach" Post TAVR Care in AMC

- Short stay (1 day) in ICU
- Optional temporary pacemaker
- Early mobilization
- Avoid polypharmacy
- Cardiac Rehabilitation Clinic

"Minimalist Approach" TAVR in AMC

TAVR in AMC Baseline Characteristics

	Overall (N = 403)	General Anesthesia (N = 200)	Conscious Sedation (N = 203)	P value
Age	78.8 ± 5.0	77.9 ± 5.3	79.7 ± 4.6	0.001
Male sex	189 (46.9%)	99 (49.5%)	90 (44.3%)	0.30
BMI, kg/m ²	24.0 ± 3.3	24.1 ± 3.2	23.8 ± 3.4	0.41
STS risk score, %	4.1 ± 3.2	4.2 ± 3.8	4.0 ± 2.5	0.57
DM	128 (31.8%)	67 (33.5%)	61 (30.0%)	0.39
HTN	339 (84.1%)	168 (84.0%)	171 (84.2%)	0.94
Atrial fibrillation	57 (14.1%)	28 (14.0%)	29 (14.3%)	0.92
CAD	143 (35.5%)	78 (39.0%)	65 (32.0%)	0.11
Previous MI	19 (4.7%)	6 (3.0%)	13 (6.4%)	0.12
Previous stroke	39 (9.7%)	16(8.0%)	23 (11.3%)	0.22
PVD	21 (5.2%)	13 (6.5%)	8 (3.9%)	0.31
CKD	114 (28.3%)	61 (30.5%)	53 (26.1%)	0.29
COPD	62 (15.4%)	36 (18.0%)	26 (12.5%)	0.11

TAVR in AMC Procedural Characteristics

	Overall (N = 403)	General Anesthesia (N = 200)	Conscious Sedation (N = 203)	P value
Aortic-valve area, cm ²	0.60 ± 0.17	0.60 ± 0.17	0.60 ± 0.16	0.92
AV Vmax, m/s	5.0 ± 0.8	4.9 ± 0.8	5.0 ± 0.9	0.33
Mean gradient, mmHg	60.8 ± 22.9	59.7 ± 22.6	62.4 ± 23.4	0.29
Bicuspid AV	35 (8.7%)	20 (10.0%)	15 (7.4%)	0.37
LV EF, %	58.3 ± 11.1	58.8 ± 10.8	57.8 ± 11.4	0.45
Device type				0.003
Balloon-expandable	261 (64.8%)	115 (57.5%)	146 (71.9%)	
Self-expandable	142 (35.2%)	85 (42.5%)	57 (28.1%)	

TAVR in AMC Procedural Outcomes

	Overall (N = 403)	General Anesthesia (N = 200)	Conscious Sedation (N = 203)	P value
Device success	393 (97.5%)	193 (96.5%)	200 (98.5%)	0.16
Conversion to surgery	6 (1.5%)	5 (2.5%)	1 (0.5%)	0.10
Coronary obstruction	1 (0.2%)	1 (0.5%)	0	0.50
Implantation of two valves	12 (3.0%)	10 (5.0%)	2 (1.0%)	0.02
New permanent pacemaker	34 (8.4%)	20 (10.0%)	14 (6.9%)	0.26
PVL ≥ moderate	25 (6.3%)	20 (10.2%)	5 (2.5%)	0.002
Major vascular complication	19 (4.7%)	17 (8.5%)	2 (1.0%)	<0.001
Length of hospital stay (days)	8.6±13.5	9.7±8.8	7.4±16.8	<0.001

TAVR in AMC 30 Days Outcomes

	Overall (N = 403)	General Anesthesia (N = 200)	MAC (N = 203)	P value
Death, all	10 (2.5%)	9 (4.5%)	1 (0.5%)	0.01
Cardiac death	6 (1.5%)	5 (2.5%)	1 (0.5%)	0.10
Non-cardiac death	4 (1.0%)	4 (2.0%)	0	0.043
Stroke, all	13 (3.2%)	11 (5.5%)	2 (1.0%)	0.01
Disabling	6 (1.5%)	4 (2.0%)	2 (1.0%)	0.40
Non-disabling	7 (1.7%)	7 (3.5%)	0	0.07
Death or disabling stroke	15 (3.7%)	12 (6.0%)	3 (1.5%)	0.015
Bleeding	130 (32.3%)	86 (43.0%)	44 (21.7%)	<0.001
Life-threatening	30 (7.4%)	21 (10.5%)	9 (4.4%)	0.02
Major	117 (29.0%)	79 (39.5%)	38 (18.7%)	<0.001

Standard TAVR Defined by VARC

Standard Performance (VARC-2*) for High-Risk AS patients (@ 30 days)	Asian 2017	2018	"MAC"
All-cause mortality < 3%	2.5%	2.5%	0.5%
Major (disabling) strokes < 2%	2.2%	3.2%	1.0%
Major vascular complications < 5%	5.0%	4.7%	1.0%

< 10%

< 5%

9.5%

9.8%

8.4%

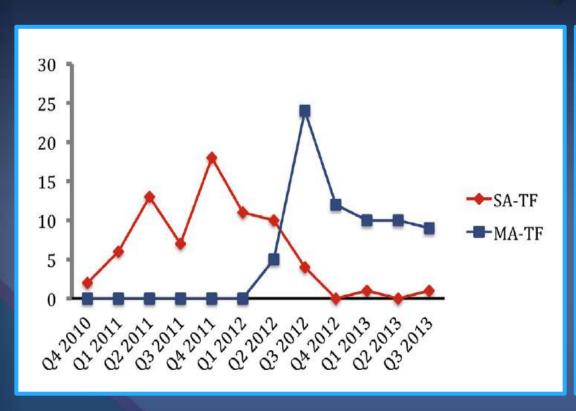
6.3%

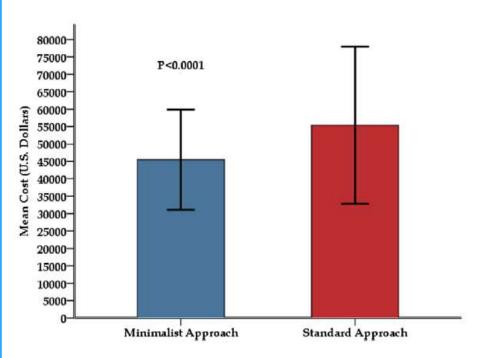
6.9%

2.5%

New permanent pacemakers

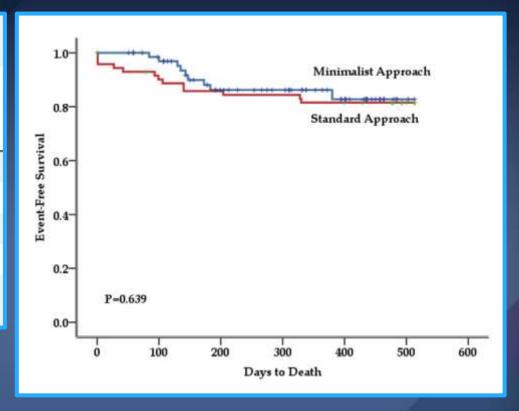
Mod-severe PVR


General Anesthesia vs. Local Anesthesia Current Cumulative Evidence


Outcomes and Cost Analysis

 A total of 142 patients: 70 MA vs. 72 standard approach at Emory University, USA.

Minimal vs. Standard Approach Trend Over Time and Total Costs



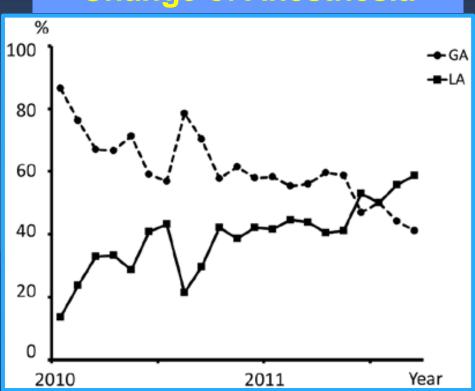
Minimal vs. Standard Approach Outcome

TABLE 3 Outcomes								
Outcome	$\begin{array}{l} \text{Minimalist} \\ \text{Approach} \\ \text{(n = 70)} \end{array}$	Standard Approach (n = 72)	p Value					
In-hospital mortality	0 (0)	3 (4.2)	0.24					
Patients receiving ICU care	53 (75)	69 (100)	< 0.001					
Total ICU time, h*	22 (2-28)	28 (23-48)	< 0.001					
Length of stay, days*	4 (3-7)	6 (4-9)	0.01					
Length of stay: procedure to discharge, days*	3 (2-4)	5 (3-6.5)	<0.001					

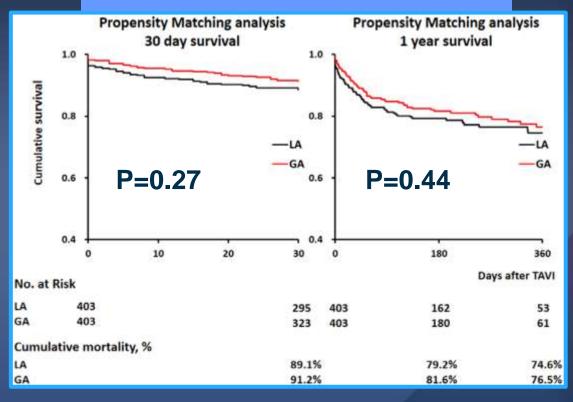
Structural Heart Disease

Clinical Outcomes and Safety of Transfemoral Aortic Valve Implantation Under General Versus Local Anesthesia

Subanalysis of the French Aortic National CoreValve and Edwards 2 Registry


Atsushi Oguri, MD; Masanori Yamamoto, MD; Gauthier Mouillet, MD; Martine Gilard, MD;
 Marc Laskar, MD; Helene Eltchaninoff, MD; Jean Fajadet, MD; Bernard Iung, MD;
 Patrick Donzeau-Gouge, MD; Pascal Leprince, MD; Alain Leguerrier, MD; Alain Prat, MD;
 Michel Lievre, PhD; Karine Chevreul, MD; Jean-Luc Dubois-Rande, MD;
 Romain Chopard, MD; Eric Van Belle, MD; Toshiaki Otsuka, MD; Emmanuel Teiger, MD;
 on behalf of FRANCE 2 Registry Investigators

- 2326 TF-TAVR patients in the FRANCE 2 registry.
- All patients: GA (n=1377) and LA (n=949)
- Propensity-matched cohort (N=401)



Change of TAVR Pattern and Outcome

Change of Anesthesia

Mortality of Propensity-Matched Cohort

Systemic Review and Meta-Analysis **Local and General Anesthesia**

Open Access Research

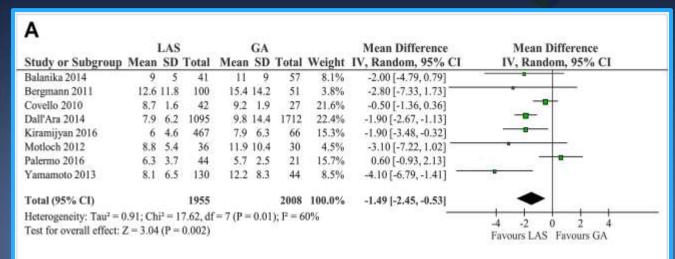
BMJ Open Is local anaesthesia a favourable approach for transcatheter aortic valve implantation? A systematic review and meta-analysis comparing local and general anaesthesia

> Constanze Ehret, 1 Rolf Rossaint, 1 Ann Christina Foldenauer, 2 Christian Stoppe, 1 Ana Stevanovic, 1 Katharina Dohms, 1 Marc Hein, 1 Gereon Schälte1

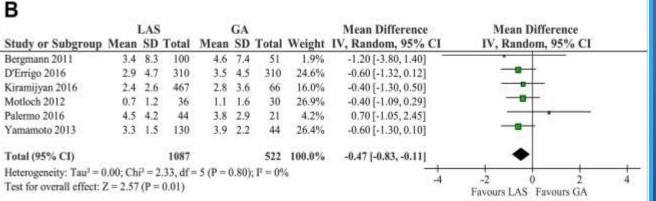
1 RCT and 19 observational studies were included in the review.

Systemic Review and Meta-Analysis Local and General Anesthesia

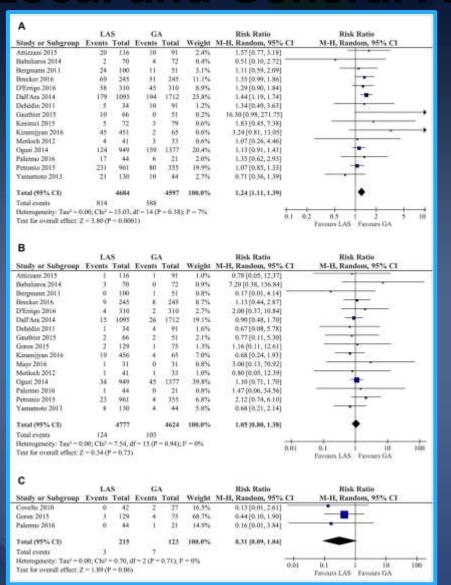
	LA	S	G/	1		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Attizzani 2015	5	116	4	91	4.1%	0.98 [0.27, 3.55]	
Babaliaros 2014	0	70	4	72	0.8%	0.11 [0.01, 2.08]	
Balanika 2014	2	41	3	57	2.2%	0.93 [0.16, 5.30]	-
Bergmann 2011	6	100	5	51	5,3%	0.61 [0.20, 1.91]	
Brecker 2016	13	245	12	245	11.6%	1.08 [0.50, 2.33]	
D'Errigo 2016	12	310	15	310	12.3%	0.80 [0.38, 1.68]	-
Dehédin 2011	3	34	6	91	3.9%	1.34 [0.35, 5.05]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gauthier 2015	3	66	1	51	1.4%	2.32 [0.25, 21.63]	-
Kesimci 2015	10	72	7	79	8.2%	1.57 [0.63, 3.90]	-
Kiramijyan 2016	23	467	7	66	10.5%	0.46 [0.21, 1.04]	-
Motloch 2012	5	41	3	33	3.7%	1.34 [0.35, 5,21]	-
Palermo 2016	1	44	0	21	0.7%	1.47 [0.06, 34.56]	5 CO 31
Petronio 2015	57	961	23	355	31.0%	0.92 [0.57, 1.46]	-
Yamamoto 2013	10	130	3	44	4.4%	1.13 [0.33, 3.91]	
Total (95% CI)		2697		1566	100.0%	0.91 [0.70, 1.18]	•
Total events	150		93				
Heterogeneity: Tau2 = 0.0	00; Chi2 =	8.32, df	= 13 (P =	0.82);	P = 0%	0.01	0.1 1 10 1


30-Days Mortality "No Difference"

В	LA	S	G	١		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	CI M-H, Random, 95% CI
Attizzani 2015	5	116	3	91	8.5%	1.31 [0.32, 5.33]	
Babaliaros 2014	0	70	3	72	2.4%	0.15 [0.01, 2.79]	*
Dall'Ara 2014	77	1095	90	1712	31.3%	1.34 [1.00, 1.80]	*
Dehédin 2011	3	34	7	91	9.6%	1.15 [0.31, 4.18]	-
Gauthier 2015	2	66	1	51	3.5%	1.55 [0.14, 16.57]	
Goren 2015	1	129	4	75	2.7%	0.58 [0.04, 9.16]	*
Kiramijyan 2016	15	466	7	66	16.2%	0.30 [0.13, 0.72]	
Mayr 2016	1	31	0	31	2.1%	3.00 [0.13, 70.92]	
Petronio 2015	38	961	17	355	23.7%	0.83 [0.47, 1.44]	-
Total (95% CI)		2968		2544	100.0%	0.87 [0.55, 1.40]	•
Total events	142		129				107 UK 1500
Heterogeneity: Tau ² = 0.	16; Chi2 =	13.83,	df = 8 (P =	= 0.09);	$I^2 = 42\%$		t
Test for overall effect: Z		D 1000000		- 55			0.01 0.1 1 10 100 Favours LAS Favours GA


In-Hospital Mortality "No Difference"

Systemic Review and Meta-Analysis Local and General Anesthesia


Length of hospital stay "LAS Is Better"

Length of ICU stay "LAS Is Better"

Systemic Review and Meta-Analysis Local and General Anesthesia

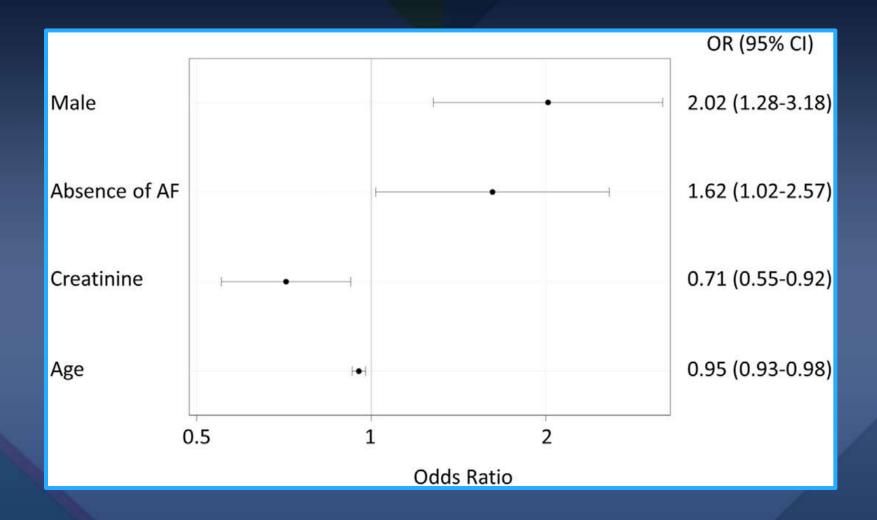
New pacemaker insertion "GA Is Better"

Stroke "No Difference"

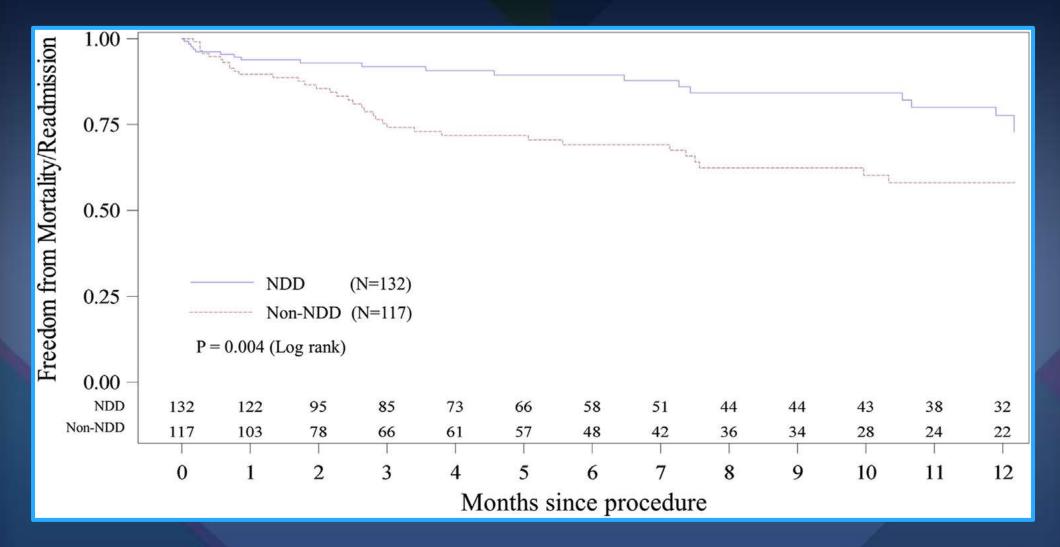
Pneumonia "LAS Is Better"

© 2018 PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

STRUCTURAL: FOCUS ON TAVR


Predictors and Clinical Outcomes of Next-Day Discharge After Minimalist Transfemoral Transcatheter Aortic Valve Replacement

- TF-TAVR with minimalist approach using SXT/S3.
- Among 360 eligible patients, 150 cases with next-day discharge and 210 cases with non-next-day discharge.



Predictors of Next-Day Discharge

Kaplan-Meier Curves of the Composite Endpoint of Death and Readmission

Key Milestones Starting a Minimalist TAVR

- Pre-procedural Planning Focus on the use of MDCT.
- Understanding of the anatomy.
- Minimalist procedure setting reducing procedure duration, hemodynamic instability.
- Rigorous step-wise procedural approach.

Summary

- An international trend toward minimalist TAVR.
 - appears as safe as conventional strategy
 - rapid recovery, shorter length of stay, and dramatic reduction in cost are achievable.
- When an experienced TAVR center decides to transition from GA to MAC;
 - procedural expertise, collaborative heart-team approach and anesthesia care should be guaranteed.
 - acute procedural success and long-term outcomes should not be jeopardized.

Minimalist TAVR

- No high risk clinical or anatomic features
- Minimalist Approach:
 - Conscious sedation
 - Transthoracic echo
 - No neck line or Swan
 - Groin access only
 - No Foley catheter
 - Avoid ICU admission

"Expedited Recovery"

